918 research outputs found

    Maximizing reliable crop production in a dynamic stream/aquifer system

    Get PDF
    Reliable production of a dynamic stream/aquifer system is determined through an implicitly stochastic optimization model. Adequate representation of the inflow process and dynamic modeling of the stream/aquifer system results in optimum crop yield at specified reliability levels. Results include optimal spatial and temporal allocation of groundwater and diverted river water use. These can be used for planning cropping patterns and evaluating potential diversion systems

    A pearl on SAT solving in Prolog

    Get PDF
    A succinct SAT solver is presented that exploits the control provided by delay declarations to implement watched literals and unit propagation. Despite its brevity the solver is surprisingly powerful and its elegant use of Prolog constructs is presented as a programming pearl

    A Denotational Semantics for First-Order Logic

    Get PDF
    In Apt and Bezem [AB99] (see cs.LO/9811017) we provided a computational interpretation of first-order formulas over arbitrary interpretations. Here we complement this work by introducing a denotational semantics for first-order logic. Additionally, by allowing an assignment of a non-ground term to a variable we introduce in this framework logical variables. The semantics combines a number of well-known ideas from the areas of semantics of imperative programming languages and logic programming. In the resulting computational view conjunction corresponds to sequential composition, disjunction to ``don't know'' nondeterminism, existential quantification to declaration of a local variable, and negation to the ``negation as finite failure'' rule. The soundness result shows correctness of the semantics with respect to the notion of truth. The proof resembles in some aspects the proof of the soundness of the SLDNF-resolution.Comment: 17 pages. Invited talk at the Computational Logic Conference (CL 2000). To appear in Springer-Verlag Lecture Notes in Computer Scienc

    Using SWISH to realise interactive web based tutorials for logic based languages

    Get PDF
    Programming environments have evolved from purely text based to using graphical user interfaces, and now we see a move towards web based interfaces, such as Jupyter. Web based interfaces allow for the creation of interactive documents that consist of text and programs, as well as their output. The output can be rendered using web technology as, e.g., text, tables, charts or graphs. This approach is particularly suitable for capturing data analysis workflows and creating interactive educational material. This article describes SWISH, a web front-end for Prolog that consists of a web server implemented in SWI-Prolog and a client web application written in JavaScript. SWISH provides a web server where multiple users can manipulate and run the same material, and it can be adapted to support Prolog extensions. In this paper we describe the architecture of SWISH, and describe two case studies of extensions of Prolog, namely Probabilistic Logic Programming (PLP) and Logic Production System (LPS), which have used SWISH to provide tutorial sites

    Model- and calibration-independent test of cosmic acceleration

    Full text link
    We present a calibration-independent test of the accelerated expansion of the universe using supernova type Ia data. The test is also model-independent in the sense that no assumptions about the content of the universe or about the parameterization of the deceleration parameter are made and that it does not assume any dynamical equations of motion. Yet, the test assumes the universe and the distribution of supernovae to be statistically homogeneous and isotropic. A significant reduction of systematic effects, as compared to our previous, calibration-dependent test, is achieved. Accelerated expansion is detected at significant level (4.3 sigma in the 2007 Gold sample, 7.2 sigma in the 2008 Union sample) if the universe is spatially flat. This result depends, however, crucially on supernovae with a redshift smaller than 0.1, for which the assumption of statistical isotropy and homogeneity is less well established.Comment: 13 pages, 2 figures, major change

    An Integrated Declarative Approach to Web Services Composition and Monitoring

    Get PDF
    International audienceIn this paper we propose a constraint based declarative approach for Web services composition and monitoring problem. Our approach allows user to build the abstract composition by identifying the participating entities and by providing a set of constraints that mark the boundary of the solution. Different types of constraints have been proposed to handle the composition modeling and monitoring. Abstract composition is then used for instantiating the concrete composition, which both finds and executes an instantiation respecting constraints, and also handles the process run-time monitoring. When compared to the traditional approaches, our approach is declarative and allows for the same set of constraints to be used for composition modeling and monitoring and thus allows for refining the abstract composition as a result of run-time violations, such as service failure or response time delays

    Statistical methods in cosmology

    Full text link
    The advent of large data-set in cosmology has meant that in the past 10 or 20 years our knowledge and understanding of the Universe has changed not only quantitatively but also, and most importantly, qualitatively. Cosmologists rely on data where a host of useful information is enclosed, but is encoded in a non-trivial way. The challenges in extracting this information must be overcome to make the most of a large experimental effort. Even after having converged to a standard cosmological model (the LCDM model) we should keep in mind that this model is described by 10 or more physical parameters and if we want to study deviations from it, the number of parameters is even larger. Dealing with such a high dimensional parameter space and finding parameters constraints is a challenge on itself. Cosmologists want to be able to compare and combine different data sets both for testing for possible disagreements (which could indicate new physics) and for improving parameter determinations. Finally, cosmologists in many cases want to find out, before actually doing the experiment, how much one would be able to learn from it. For all these reasons, sophisiticated statistical techniques are being employed in cosmology, and it has become crucial to know some statistical background to understand recent literature in the field. I will introduce some statistical tools that any cosmologist should know about in order to be able to understand recently published results from the analysis of cosmological data sets. I will not present a complete and rigorous introduction to statistics as there are several good books which are reported in the references. The reader should refer to those.Comment: 31, pages, 6 figures, notes from 2nd Trans-Regio Winter school in Passo del Tonale. To appear in Lectures Notes in Physics, "Lectures on cosmology: Accelerated expansion of the universe" Feb 201

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T ∼\sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm−2^{-2} s−1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T ∼\sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-
    • …
    corecore